與現有技術相比,3D打印(AM)提供了一種更為經濟有效、自動化的制造過程,它可以實現數字化的庫存,同時為工程的設計提供了更大的靈活性。熔絲制造(FFF)也稱熔融沉積制造(FDM),是熱塑性聚合物最常用的3D打印技術之一。在FFF工藝中,將熱塑性長絲送入加熱的噴頭中,熔化或液化,然后擠出并沉積在構建模型的基板上。當熔融材料沉積時,臺架在水平x-y平面內移動噴頭。然后,在完成x-y平面中的沉積之后,加熱底板垂直移動(在z軸上)。沉積層固化并與相鄰層粘合/焊接,形成所需的3D幾何形狀。
據了解,PEEK是一種高性能的熱塑性塑料,即使在高達240°C的溫度下也具有優異的機械和化學耐受性,PEEK還具有優異的耐水解性并提供防火,防煙和防毒性能。PEEK已用于汽車,航空航天,石油和天然氣等領域。本文研究的重點是PEEK的FFF用于制造生物植入物,以便有效地利用其性能,如生物相容性、疲勞性和耐磨性。本文首先討論FFF制備PEEK樣品的工藝參數,然后進行拉伸,彎曲和斷裂韌性的測試,包括與DIC的光學應變映射,為PEEK的FFF制造提供了指導,使其能夠實現在骨科植入物的應用。 研究方法 本文使用Indmatec HPP 155裝置(Apium Additive Technologies GmbH)制備FFF樣品,使用由Victrex?PEEK450G制成的直徑為1.75mm的長絲,經過壓力機構將長絲送入0.4mm直徑的噴頭,本研究中使用的FFF工藝參數如下: 噴頭移動速度:800mm/min;第一層:300mm/min 噴頭溫度:410℃;第一層390℃ 基板溫度:100℃ 層厚:0.1mm;第一層:0.18mm 擠壓寬度:0.48mm 填充圖案:直線 填充比重:100%
拉伸實驗在具有2.5kN測力傳感器的Zwick-Roell Z005萬能實驗機(UTM)上進行,在環境溫度(~20℃)下,根據ISO 527以1mm / min的恒定十字頭速度進行拉伸測試。FFF-PEEK拉伸樣件如圖2所示。
根據國際標準ISO 178,在環境溫度(~20℃)下在具有2.5kN測力傳感器的Zwick-Roell Z005萬能實驗機(UTM)上以2mm / min的恒定十字頭速度進行三點彎曲實驗。進行斷裂實驗以評估3D打印PEEK的模式I斷裂韌性。根據ASTM D5045-14標準測量FFF-PEEK試樣的拉伸斷裂性能,以測量聚合物的平面應變斷裂韌性。
結論
根據ISO 527-1:2012,拉伸強度是在拉伸實驗期間觀察到第一局部最大值的應力。因此,在屈服點評估H-0°樣品的拉伸強度,而在失效點評估H-90°和V-90°樣品的拉伸強度,H-0 °試樣表現出最高的楊氏模量和拉伸強度,其次是H-90°和V-90°(圖4和表1)。在H-0°試樣中,拉伸加載力方向平行于絲材走線方向,因此該樣品顯示出更高的楊氏模量和拉伸強度。 H-90°的楊氏模量和拉伸強度值分別比H-0°低7%和12%。由于熔融的絲材之間優異的界面結合,H-90°試樣表現出接近H-0°試樣的性能。
H-0°樣件在110%應變下評估失效,因此橫截面積較小,宏觀空隙較大。 紅色,黃色和白色(箭頭和圓圈)分別表示z制造方向,走線方向和負載方向。 圓圈表示垂直于表面的方向。
斷裂實驗結果顯示了FFF工藝參數對斷裂韌性的影響。 H-0°樣件表現出最好性能,其次是H-90°和V-90°,如載荷-位移曲線(圖9)和KIC(表3)所示。
討論 本文給出了FFF制備PEEK樣品的拉伸、彎曲、斷裂韌性,實驗邏輯緊密,實驗充分,系統的研究了FFF工藝參數對PEEK樣件力學性能的研究,為PEEK在醫學中的使用提供了較為充分的工程理論。文中大量地方值得我們學習,例如圖表的制備,圖表清晰易懂,邏輯性性強,為我們今后做類似的力學實驗提供借鑒。
Copyright ? 2014-2020 精速三維 All Rights Reserved 備案號:粵ICP備18153175號-1